Copied to
clipboard

G = D4xC22xC4order 128 = 27

Direct product of C22xC4 and D4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: D4xC22xC4, C42:20C23, C22.8C25, C25.94C22, C23.103C24, C24.602C23, (C24xC4):5C2, C4:1(C23xC4), C4:C4:23C23, C24:16(C2xC4), C2.4(C24xC4), C2.3(D4xC23), C22:1(C23xC4), C23:6(C22xC4), C22:C4:21C23, (C2xC4).155C24, (C2xC42):87C22, (C22xC42):19C2, (C23xC4):57C22, (C22xC4):22C23, (D4xC23).22C2, C23.888(C2xD4), (C2xD4).494C23, C23.375(C4oD4), C22.156(C22xD4), (C22xD4).611C22, C4o(C2xC4xD4), (C2xC4)o2(C4xD4), C4:C4o(C23xC4), C4:C4o3(C22xC4), C4o2(C22xC4:C4), (C22xC4)o(C4xD4), (C2xC4)o(D4xC23), (C2xD4)o(C23xC4), (C2xC4):9(C22xC4), C22:C4o(C23xC4), (C22xC4:C4):49C2, (C22xC4):47(C2xC4), C22:C4o3(C22xC4), C4o2(C22xC22:C4), C2.2(C22xC4oD4), (C2xC4:C4):144C22, (C23xC4)o(C22xD4), (C22xC4)o(D4xC23), (C23xC4)o(D4xC23), (C22xC4)o2(C22xD4), (C22xC22:C4):35C2, (C2xC22:C4):90C22, C22.143(C2xC4oD4), (C2xC4)o2(C2xC4xD4), (C2xC4)o5(C2xC4:C4), (C22xC4)o(C2xC4xD4), (C2xC4:C4)o(C23xC4), (C2xC4)o4(C2xC22:C4), (C2xC4)o2(C22xC4:C4), (C22xC4)o3(C2xC4:C4), (C2xC22:C4)o(C23xC4), (C23xC4)o(C22xC4:C4), (C22xC4)o3(C2xC22:C4), (C2xC4)o2(C22xC22:C4), (C22xC4)o2(C22xC4:C4), (C23xC4)o(C22xC22:C4), (C22xC4)o2(C22xC22:C4), SmallGroup(128,2154)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — D4xC22xC4
C1C2C22C23C24C23xC4C24xC4 — D4xC22xC4
C1C2 — D4xC22xC4
C1C23xC4 — D4xC22xC4
C1C22 — D4xC22xC4

Generators and relations for D4xC22xC4
 G = < a,b,c,d,e | a2=b2=c4=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 1756 in 1264 conjugacy classes, 772 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2xC4, C2xC4, D4, C23, C23, C42, C22:C4, C4:C4, C22xC4, C22xC4, C2xD4, C24, C24, C24, C2xC42, C2xC22:C4, C2xC4:C4, C4xD4, C23xC4, C23xC4, C23xC4, C22xD4, C25, C22xC42, C22xC22:C4, C22xC4:C4, C2xC4xD4, C24xC4, D4xC23, D4xC22xC4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22xC4, C2xD4, C4oD4, C24, C4xD4, C23xC4, C22xD4, C2xC4oD4, C25, C2xC4xD4, C24xC4, D4xC23, C22xC4oD4, D4xC22xC4

Smallest permutation representation of D4xC22xC4
On 64 points
Generators in S64
(1 21)(2 22)(3 23)(4 24)(5 11)(6 12)(7 9)(8 10)(13 44)(14 41)(15 42)(16 43)(17 29)(18 30)(19 31)(20 32)(25 36)(26 33)(27 34)(28 35)(37 50)(38 51)(39 52)(40 49)(45 57)(46 58)(47 59)(48 60)(53 61)(54 62)(55 63)(56 64)
(1 11)(2 12)(3 9)(4 10)(5 21)(6 22)(7 23)(8 24)(13 20)(14 17)(15 18)(16 19)(25 63)(26 64)(27 61)(28 62)(29 41)(30 42)(31 43)(32 44)(33 56)(34 53)(35 54)(36 55)(37 57)(38 58)(39 59)(40 60)(45 50)(46 51)(47 52)(48 49)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 45 31 63)(2 46 32 64)(3 47 29 61)(4 48 30 62)(5 37 16 36)(6 38 13 33)(7 39 14 34)(8 40 15 35)(9 52 41 27)(10 49 42 28)(11 50 43 25)(12 51 44 26)(17 53 23 59)(18 54 24 60)(19 55 21 57)(20 56 22 58)
(1 19)(2 20)(3 17)(4 18)(5 43)(6 44)(7 41)(8 42)(9 14)(10 15)(11 16)(12 13)(21 31)(22 32)(23 29)(24 30)(25 36)(26 33)(27 34)(28 35)(37 50)(38 51)(39 52)(40 49)(45 57)(46 58)(47 59)(48 60)(53 61)(54 62)(55 63)(56 64)

G:=sub<Sym(64)| (1,21)(2,22)(3,23)(4,24)(5,11)(6,12)(7,9)(8,10)(13,44)(14,41)(15,42)(16,43)(17,29)(18,30)(19,31)(20,32)(25,36)(26,33)(27,34)(28,35)(37,50)(38,51)(39,52)(40,49)(45,57)(46,58)(47,59)(48,60)(53,61)(54,62)(55,63)(56,64), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)(25,63)(26,64)(27,61)(28,62)(29,41)(30,42)(31,43)(32,44)(33,56)(34,53)(35,54)(36,55)(37,57)(38,58)(39,59)(40,60)(45,50)(46,51)(47,52)(48,49), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,45,31,63)(2,46,32,64)(3,47,29,61)(4,48,30,62)(5,37,16,36)(6,38,13,33)(7,39,14,34)(8,40,15,35)(9,52,41,27)(10,49,42,28)(11,50,43,25)(12,51,44,26)(17,53,23,59)(18,54,24,60)(19,55,21,57)(20,56,22,58), (1,19)(2,20)(3,17)(4,18)(5,43)(6,44)(7,41)(8,42)(9,14)(10,15)(11,16)(12,13)(21,31)(22,32)(23,29)(24,30)(25,36)(26,33)(27,34)(28,35)(37,50)(38,51)(39,52)(40,49)(45,57)(46,58)(47,59)(48,60)(53,61)(54,62)(55,63)(56,64)>;

G:=Group( (1,21)(2,22)(3,23)(4,24)(5,11)(6,12)(7,9)(8,10)(13,44)(14,41)(15,42)(16,43)(17,29)(18,30)(19,31)(20,32)(25,36)(26,33)(27,34)(28,35)(37,50)(38,51)(39,52)(40,49)(45,57)(46,58)(47,59)(48,60)(53,61)(54,62)(55,63)(56,64), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)(25,63)(26,64)(27,61)(28,62)(29,41)(30,42)(31,43)(32,44)(33,56)(34,53)(35,54)(36,55)(37,57)(38,58)(39,59)(40,60)(45,50)(46,51)(47,52)(48,49), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,45,31,63)(2,46,32,64)(3,47,29,61)(4,48,30,62)(5,37,16,36)(6,38,13,33)(7,39,14,34)(8,40,15,35)(9,52,41,27)(10,49,42,28)(11,50,43,25)(12,51,44,26)(17,53,23,59)(18,54,24,60)(19,55,21,57)(20,56,22,58), (1,19)(2,20)(3,17)(4,18)(5,43)(6,44)(7,41)(8,42)(9,14)(10,15)(11,16)(12,13)(21,31)(22,32)(23,29)(24,30)(25,36)(26,33)(27,34)(28,35)(37,50)(38,51)(39,52)(40,49)(45,57)(46,58)(47,59)(48,60)(53,61)(54,62)(55,63)(56,64) );

G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,11),(6,12),(7,9),(8,10),(13,44),(14,41),(15,42),(16,43),(17,29),(18,30),(19,31),(20,32),(25,36),(26,33),(27,34),(28,35),(37,50),(38,51),(39,52),(40,49),(45,57),(46,58),(47,59),(48,60),(53,61),(54,62),(55,63),(56,64)], [(1,11),(2,12),(3,9),(4,10),(5,21),(6,22),(7,23),(8,24),(13,20),(14,17),(15,18),(16,19),(25,63),(26,64),(27,61),(28,62),(29,41),(30,42),(31,43),(32,44),(33,56),(34,53),(35,54),(36,55),(37,57),(38,58),(39,59),(40,60),(45,50),(46,51),(47,52),(48,49)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,45,31,63),(2,46,32,64),(3,47,29,61),(4,48,30,62),(5,37,16,36),(6,38,13,33),(7,39,14,34),(8,40,15,35),(9,52,41,27),(10,49,42,28),(11,50,43,25),(12,51,44,26),(17,53,23,59),(18,54,24,60),(19,55,21,57),(20,56,22,58)], [(1,19),(2,20),(3,17),(4,18),(5,43),(6,44),(7,41),(8,42),(9,14),(10,15),(11,16),(12,13),(21,31),(22,32),(23,29),(24,30),(25,36),(26,33),(27,34),(28,35),(37,50),(38,51),(39,52),(40,49),(45,57),(46,58),(47,59),(48,60),(53,61),(54,62),(55,63),(56,64)]])

80 conjugacy classes

class 1 2A···2O2P···2AE4A···4P4Q···4AV
order12···22···24···44···4
size11···12···21···12···2

80 irreducible representations

dim1111111122
type++++++++
imageC1C2C2C2C2C2C2C4D4C4oD4
kernelD4xC22xC4C22xC42C22xC22:C4C22xC4:C4C2xC4xD4C24xC4D4xC23C22xD4C22xC4C23
# reps112124213288

Matrix representation of D4xC22xC4 in GL5(F5)

40000
01000
00400
00010
00001
,
40000
04000
00400
00010
00001
,
20000
04000
00100
00010
00001
,
10000
04000
00100
00012
00044
,
10000
04000
00100
00040
00011

G:=sub<GL(5,GF(5))| [4,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[2,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1,4,0,0,0,2,4],[1,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,4,1,0,0,0,0,1] >;

D4xC22xC4 in GAP, Magma, Sage, TeX

D_4\times C_2^2\times C_4
% in TeX

G:=Group("D4xC2^2xC4");
// GroupNames label

G:=SmallGroup(128,2154);
// by ID

G=gap.SmallGroup(128,2154);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,448,477,352]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<